361 research outputs found

    Combining Text and Formula Queries in Math Information Retrieval: Evaluation of Query Results Merging Strategies

    Full text link
    Specific to Math Information Retrieval is combining text with mathematical formulae both in documents and in queries. Rigorous evaluation of query expansion and merging strategies combining math and standard textual keyword terms in a query are given. It is shown that techniques similar to those known from textual query processing may be applied in math information retrieval as well, and lead to a cutting edge performance. Striping and merging partial results from subqueries is one technique that improves results measured by information retrieval evaluation metrics like Bpref

    Sensitive and Scalable Online Evaluation with Theoretical Guarantees

    Full text link
    Multileaved comparison methods generalize interleaved comparison methods to provide a scalable approach for comparing ranking systems based on regular user interactions. Such methods enable the increasingly rapid research and development of search engines. However, existing multileaved comparison methods that provide reliable outcomes do so by degrading the user experience during evaluation. Conversely, current multileaved comparison methods that maintain the user experience cannot guarantee correctness. Our contribution is two-fold. First, we propose a theoretical framework for systematically comparing multileaved comparison methods using the notions of considerateness, which concerns maintaining the user experience, and fidelity, which concerns reliable correct outcomes. Second, we introduce a novel multileaved comparison method, Pairwise Preference Multileaving (PPM), that performs comparisons based on document-pair preferences, and prove that it is considerate and has fidelity. We show empirically that, compared to previous multileaved comparison methods, PPM is more sensitive to user preferences and scalable with the number of rankers being compared.Comment: CIKM 2017, Proceedings of the 2017 ACM on Conference on Information and Knowledge Managemen

    Synchronous collaborative information retrieval: techniques and evaluation

    Get PDF
    Synchronous Collaborative Information Retrieval refers to systems that support multiple users searching together at the same time in order to satisfy a shared information need. To date most SCIR systems have focussed on providing various awareness tools in order to enable collaborating users to coordinate the search task. However, requiring users to both search and coordinate the group activity may prove too demanding. On the other hand without effective coordination policies the group search may not be effective. In this paper we propose and evaluate novel system-mediated techniques for coordinating a group search. These techniques allow for an effective division of labour across the group whereby each group member can explore a subset of the search space.We also propose and evaluate techniques to support automated sharing of knowledge across searchers in SCIR, through novel collaborative and complementary relevance feedback techniques. In order to evaluate these techniques, we propose a framework for SCIR evaluation based on simulations. To populate these simulations we extract data from TREC interactive search logs. This work represent the first simulations of SCIR to date and the first such use of this TREC data

    Use of implicit graph for recommending relevant videos: a simulated evaluation

    Get PDF
    In this paper, we propose a model for exploiting community based usage information for video retrieval. Implicit usage information from a pool of past users could be a valuable source to address the difficulties caused due to the semantic gap problem. We propose a graph-based implicit feedback model in which all the usage information can be represented. A number of recommendation algorithms were suggested and experimented. A simulated user evaluation is conducted on the TREC VID collection and the results are presented. Analyzing the results we found some common characteristics on the best performing algorithms, which could indicate the best way of exploiting this type of usage information

    Unsupervised, Efficient and Semantic Expertise Retrieval

    Get PDF
    We introduce an unsupervised discriminative model for the task of retrieving experts in online document collections. We exclusively employ textual evidence and avoid explicit feature engineering by learning distributed word representations in an unsupervised way. We compare our model to state-of-the-art unsupervised statistical vector space and probabilistic generative approaches. Our proposed log-linear model achieves the retrieval performance levels of state-of-the-art document-centric methods with the low inference cost of so-called profile-centric approaches. It yields a statistically significant improved ranking over vector space and generative models in most cases, matching the performance of supervised methods on various benchmarks. That is, by using solely text we can do as well as methods that work with external evidence and/or relevance feedback. A contrastive analysis of rankings produced by discriminative and generative approaches shows that they have complementary strengths due to the ability of the unsupervised discriminative model to perform semantic matching.Comment: WWW2016, Proceedings of the 25th International Conference on World Wide Web. 201

    Study of Relevance and Effort across Devices

    Get PDF
    Relevance judgements are essential for designing information retrieval systems. Traditionally, judgements have been judgements have been gathered via desktop interfaces. However, with the rise in popularity of smaller devices for information access, it has become imperative to investigate whether desktop based judgements are different from judgements gathered using mobiles. Recently, user effort and document usefulness have also emerged as important dimensions to optimize and evaluate information retrieval systems. Since existing work is limited to desktops, it remains to be seen how these judgements are affected by user’s search device. In this paper, we address these shortcomings by collecting and analyzing relevance, usefulness and effort judgements on mobiles and desktops. Analysis of these judgements indicates that high agreement rate between desktop and mobile judges for relevance, followed by usefulness and findability. We also found that desktop judges are likely to spend more time and examine documents in greater depth on non-relevant/notuseful/difficult documents compared to mobile judges. Based on our findings, we suggest that relevance judgements should be gathered via desktops and effort judgements should be collected on each device independently

    Towards Spatial Word Embeddings

    Get PDF
    Leveraging textual and spatial data provided in spatio-textual objects (eg., tweets), has become increasingly important in real-world applications, favoured by the increasing rate of their availability these last decades (eg., through smartphones). In this paper, we propose a spatial retrofitting method of word embeddings that could reveal the localised similarity of word pairs as well as the diversity of their localised meanings. Experiments based on the semantic location prediction task show that our method achieves significant improvement over strong baselines
    corecore